# Ag<sub>3.6</sub>Mo<sub>9</sub>Se<sub>11</sub>: Premier composé à clusters Mo<sub>9</sub> dans des motifs Mo<sub>9</sub>Se<sub>11</sub>

P. GOUGEON,\* J. PADIOU,\* J. Y. LE MAROUILLE,† M. POTEL,\* et M. SERGENT\*

Université de Rennes-Beaulieu, Laboratoire Associé au CNRS n° 254, \*Laboratoire de Chimie Minérale B et †Laboratoire de Cristallochimie, Avenue du Général Leclerc - 35042 Rennes Cédex, France

Received July 25, 1983

The synthesis, the crystal structure and the electrical properties of  $Ag_{3.6}Mo_9Se_{11}$  are presented. The structure is orthorhombic (space group *Cmcm*) and can be well described as a stacking of  $Mo_9Se_{11}$  units. The tridimensional arrangement of these units leaves a certain number of cavities in the chalcogen atom network. These cavities are partially occupied by silver atoms.

### Introduction

La chimie des chalcogénures ternaires de molybdène de basse valence se caractérise par la formation de clusters Mo<sub>6</sub>, Mo<sub>9</sub>, Mo<sub>12</sub>, ou de chaînes infinies  $|Mo_{6/2}|^{1}_{\infty}$  dans des composés de formule  $M_{\sim 3}Mo_{15}X_{19}$ , (clusters  $M_2 Mo_{15} X_{19}$ Mo<sub>6</sub> et  $Mo_{9}$ ).  $M_2Mo_9X_{11}$  (clusters  $Mo_6$  et  $Mo_{12}$ ), et  $M_2Mo_6X_6$  (X = S, Se, ou Te), M étant un gros cation monovalent (In, Tl, alcalins) ou divalent (Ba) (1-9). Dans le système Ag-Mo-Se, avait précédemment été isolée une "phase de Chevrel," AgMo<sub>6</sub>Se<sub>8</sub> à clusters octaédriques  $Mo_6$  (10).

Nous présentons ici la synthèse, la structure cristalline et les propriétés de transport d'une nouvelle phase de ce système, de formule  $Ag_{3.6}Mo_9Se_{11}$  (11, 12), ne comportant que des clusters  $Mo_9$ .

#### Synthese

Le composé  $Ag_{3.6}Mo_9Se_{11}$  est synthétisé à partir des éléments (Ag, Mo, Se) mé-0022-4596/84 \$3.00

Copyright © 1984 by Academic Press, Inc. All rights of reproduction in any form reserved. langés en quantités stoechiométriques. La réaction s'effectue dans un tube de silice scellé sous vide, à une température de l'ordre de 900°C. Après broyage et pastillage, un recuit à température plus élevée (1000–1100°C) permet d'obtenir une phase pure. Elle se décompose en AgMo<sub>6</sub>Se<sub>8</sub> et Mo, par recuit à 1200°C.

Les poudres microcristallines, stables à l'air, de couleur noire, sont analysées au moyen de leur spectre de diffraction X enregistré à la longueur d'onde  $\lambda Cu K \bar{\alpha}$ , sur un goniomètre CGR G 2000 équipé d'un compteur proportionnel. Tout écart à la stoechiométrie en molybdène ou sélénium fait apparaître les raies caractéristiques, soit de Mo, soit de MoSe<sub>2</sub>. De même, un défaut en argent se traduit par la présence de MoSe<sub>2</sub>. Par contre, la limite supérieure de la composition en argent est plus difficile à apprécier du fait de la superposition des raies de diffraction X de l'argent et du produit. Cependant, l'invariance du diffractogramme X (Fig. 1) observé en fonction de la teneur en Ag suggère, au plus, un domaine



FIG. 1. Diagramme de diffraction X de  $Ag_{3.6}Mo_9Se_{11}$  ( $\lambda$  Cu $K\tilde{\alpha}$ ).

de non-stoechiométrie très faible autour de la composition  $Ag_{3.6}Mo_9Se_{11}$ . Ceci est confirmé par les études structurales complètes effectuées sur deux monocristaux (a) et (b) issus de poudres de composition initiale (a) " $Ag_{3.5}Mo_9Se_{11}$ " et (b) " $Ag_8Mo_9Se_{11}$ " qui n'ont fait apparaître que de très faibles variations, aussi bien au niveau de la dimension de la maille cristalline que de la composition en argent (Tableau I).

Les paramètres de maille des cristaux (a) et (b) annoncés dans le Tableau I ont été affinés par une méthode de moindres carrés à partir de 25 angles de diffraction optimisés sur diffractomètre automatique. Etant donné la similitude des résultats structuraux relatifs à ces deux cristaux, nous ne présentons que ceux concernant le cristal (a).

Les cristaux de cette phase sont obtenus uniquement par transport chimique en phase vapeur dans un gradient de 30°C (1030-1060°C), l'agent de transport est le chlore, introduit sous forme de AgCl. Les cristaux se présentent en général sous deux aspects: des bipyramides tronquées à bases rectangulaires dont l'axe d'allongement est la direction |010|, ou des plaquettes obtenues par croissance privilégiée de la face (010).

# **Etude Cristallographique**

Les études radiocristallographiques effectuées par méthode de Weissenberg et de précession montrent que ce composé cristallise dans le système orthorhombique. Les extinctions systématiques relevées (hkl: h + k = 2n + 1; h0l: l = 2n + 1) sont compatibles avec les groupes spatiaux Cmcm, C2cm, et  $Cmc2_1$ .

Les intensités diffractées de l'espace réciproque indépendant ont été mesurées avec un diffractomètre ENRAF NONIUS CAD-4. Les conditions d'enregistrement sont rassemblées dans le Tableau II. Les réflexions observées ont été corrigées des facteurs de Lorentz polarisation, et de l'absorption, en assimilant le cristal à une sphére de volume équivalent. Seules les réflexions répondant au critère  $I > \sigma(I)$  ont été conservées lors de la résolution structu-

TABLEAU I

| (a) Ag <sub>3.60</sub> Mo <sub>9</sub> Se <sub>11</sub> | a = 11.910(3) $b = 13.614(4)$                                                   |
|---------------------------------------------------------|---------------------------------------------------------------------------------|
| (b) Ag <sub>3.76</sub> Mo <sub>9</sub> Se <sub>11</sub> | c = 11.679(3) Å $V = 1893.7(9)$ Å <sup>3</sup><br>a = 11.926(3) $b = 13.619(3)$ |
|                                                         | $c = 11.661(9) \text{ Å}  V = 1893.9(16) \text{ Å}^3$                           |

Les compositions en argent ont été déterminées à partir de l'affinement par moindres carrés des taux d'occupation; l'écart-type associé à la stoechiométrie globale est de 0.01

TABLEAU II Conditions de l'Enregistrement et de l'Affinement

| Dimension                             | $0.07 \times 0.07 \times 0.075$<br>( $\bar{R} = 0.036 \text{ mm}$ ) |
|---------------------------------------|---------------------------------------------------------------------|
| Coefficient linéaire                  |                                                                     |
| d'absorption                          | $30.1 \text{ mm}^{-1} (\mu \overline{R} = 1.1)$                     |
| Radiation utilisée                    | $MoK\bar{\alpha} (\lambda = 0.71069 \text{ Å})$                     |
| Limites d'enregistrement              | $\theta < 30^{\circ}$                                               |
| Balayage                              | $\omega - 2\theta$                                                  |
| Amplitude                             | $(1 + 0.35 \text{ tg } \theta)$ (°)                                 |
| Ouverture                             | $(2 + 0.5 \text{ tg } \theta) \text{ (mm)}$                         |
| Nombre de réflexions                  |                                                                     |
| $L > \sigma(D)$                       | 841                                                                 |
| I > O(I)<br>Voleur finale de <i>P</i> | 0.033                                                               |
|                                       | 0.033                                                               |
| Valeur finale de $R_{\omega}$         | 0.039                                                               |
| Ecart-type d'une                      |                                                                     |
| observation de poids                  |                                                                     |
| unitaire (G.O.F.)                     | 0.999                                                               |

rale, entièrement réalisée à l'aide de la bibliothèque "SDP" (13) implantée sur un mini-ordinateur PDP 11/60.

#### **Resolution Structurale**

La solution présentant la meilleure figure de mérite donnée par le programme MULTAN a permis de localiser dans un premier temps les quatre atomes de molybdène et quatre des cinq atomes de sélénium. Une carte de densité électronique différence révèle alors les positions du cinquième sélénium, ainsi que celles de deux atomes d'argent (Ag(1) en position 8f, et Ag(3) en 4c). L'affinement de ce modèle abaisse le facteur R de reliabilité à 0.14. L'examen d'une nouvelle carte de densité èlectronique différence montre alors deux pics situés de part et d'autre de Ag(3), et distants de 0.9 Å. Nous avons donc divisé ce site 4c en deux sites 8f d'occupation moitié. Le facteur R s'abaisse ainsi à 0.08.

Deux nouveaux pics apparaissent alors, l'un Ag(2) situé à 1.10 Å du site Ag(1), l'autre correspondant à une nouvelle position Ag(4) en 16 h. Quatre cycles d'affinement par moindres carrés et matrice totale des positions atomiques, des facteurs de température anisotrope, ainsi que des taux d'occupation de tous les sites partiellement occupés par les atomes d'argent conduisent aux valeurs R finales annoncées dans le Tableau II. Une dernière carte de densité électronique différence ne fait plus alors apparaître de pics supérieurs à 2 e/Å<sup>3</sup>.

Des tests d'affinement menés dans les autres groupes spatiaux possibles C2cm et  $Cmc2_1$  se sont révélés négatifs et confirment la distribution centrosymétrique des modules de facteurs de structure normalisés. Les coordonnées atomiques, les facteurs d'agitation thermique anisotropes, ainsi que leurs écarts-types sont rassemblés dans le Tableau III.

### **Description Structurale**

L'originalité de la structure de  $Ag_{3.6}Mo_9Se_{11}$  réside dans le fait qu'elle constitue le premier exemple de structure construit avec uniquement des motifs  $Mo_9Se_{11}$ , par opposition à celles que nous avons décrites précédemment:  $M_2Mo_{15}X_{19}$  et  $In_3Mo_{15}Se_{19}$  dans lesquelles coexistent à la fois les deux entités  $Mo_6Se_8$  et  $Mo_9Se_{11}$ .

# Motif $Mo_9Se_{11}$ (Fig. 2)

Sur le plan géométrique, le motif Mo<sub>9</sub>Se<sub>11</sub> est semblable à ceux rencontrés dans les structures-types In<sub>2</sub>Mo<sub>15</sub>Se<sub>19</sub> et In<sub>~3</sub>Mo<sub>15</sub> Se<sub>19</sub>: il peut donc être décrit comme résultant de la condensation uniaxiale de deux motifs Mo<sub>6</sub>Se<sub>8</sub> par mise en commun d'une face Mo<sub>3</sub>Se<sub>3</sub>. Toutefois, le groupe de symétrie ponctuelle du motif est ici C2v, alors que dans les exemples précédents, il était respectivement D3 et C3h. Cet abaissement de symétrie conduit aussi à une différence notable des distances Mo-Mo dans le cluster. En particulier, on peut noter une diminution de la distance intertriangle (2.227 contre 2.280 Å dans In<sub>2</sub> Mo<sub>15</sub>Se<sub>19</sub>), ainsi qu'une assez grande dis-

| Atomes        | Position   | au       | x         | у         | z         | $B_{eq}^{a}$<br>(Å <sup>2</sup> ) |
|---------------|------------|----------|-----------|-----------|-----------|-----------------------------------|
| <b>Mo(</b> 1) | 8 <i>f</i> | 1        | 0         | 81623(8)  | 13239(9)  | 0.43(2)                           |
| Mo(2)         | 4c         | 1        | 0         | 64153(11) | 25000     | 0.47(2)                           |
| Mo(3)         | 8g         | 1        | 18782(9)  | 87162(7)  | 25000     | 0.50(2)                           |
| Mo(4)         | 16h        | 1        | 18646(6)  | 70483(5)  | 13598(6)  | 0.50(1)                           |
| Se(1)         | 4 <i>c</i> | 1        | 0         | 97810(13) | 25000     | 0.84(3)                           |
| Se(2)         | 8 <i>f</i> | 1        | 0         | 65013(9)  | 02700(10) | 0.78(2)                           |
| Se(3)         | 8g         | 1        | 19063(11) | 54205(9)  | 25000     | 0.84(2)                           |
| Se(4)         | 16h        | 1        | 81378(8)  | 87468(6)  | 03006(7)  | 0.72(1)                           |
| Se(5)         | 8 <i>g</i> | 1        | 35891(11) | 75860(9)  | 25000     | 0.96(2)                           |
| Ag(1)         | 8 <i>f</i> | 0.806(3) | 0         | 13280(10) | 38860(10) | 2.31(3)                           |
| Ag(2)         | 8 <i>f</i> | 0.212(3) | 0         | 06100(70) | 06290(60) | 5.1 (2)                           |
| Ag(3)         | 8 <i>f</i> | 0.508(3) | 0         | 42530(20) | 21090(30) | 3.31(7)                           |
| Ag(4)         | 16h        | 0.138(2) | 37250(60) | 99240(70) | 46790(90) | 5.8 (2)                           |

 TABLEAU III

 Coordonnées Atomiques (× 10<sup>5</sup>) et Facteurs de Température Isotropes Equivalents de Ag3 (MosSe1)

<sup>a</sup> 
$$B_{eq} = 4/3 \sum_{i,j} \beta_{ij} a_i a_j$$
.



FIG. 2. Motif  $Mo_9Se_{11}$  de symétrie  $C_{2\nu}$ . Les six séléniums en pointillés appartiennent aux six motifs voisins.

#### GOUGEON ET AL.

| Atomes        | $\boldsymbol{eta}_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\boldsymbol{eta}_{13}$ | $\beta_{23}$ |
|---------------|-------------------------|--------------|--------------|--------------|-------------------------|--------------|
| <b>Mo(1)</b>  | 66(6)                   | 72(4)        | 70(6)        | 0            | 0                       | 0(10)        |
| Mo(2)         | 89(9)                   | 49(6)        | 100(9)       | 0            | 0                       | 0            |
| Mo(3)         | 81(6)                   | 73(5)        | 91(6)        | 0(10)        | 0                       | 0            |
| Mo(4)         | 74(4)                   | 73(3)        | 95(4)        | 10(7)        | 10(8)                   | -3(7)        |
| Se(1)         | 160(1)                  | 65(8)        | 20(1)        | 0            | 0                       | 0            |
| Se(2)         | 156(8)                  | 117(6)       | 105(8)       | 0            | 0                       | -80(10)      |
| Se(3)         | 136(8)                  | 82(6)        | 208(8)       | 90(1)        | 0                       | 0            |
| Se(4)         | 128(5)                  | 109(4)       | 111(5)       | -15(8)       | -72(9)                  | 17(8)        |
| Se(5)         | 73(7)                   | 160(6)       | 232(8)       | 0(10)        | 0                       | 0            |
| Ag(1)         | 450(10)                 | 408(8)       | 239(9)       | 0            | 0                       | -370(20)     |
| <b>Ag</b> (2) | 280(40)                 | 1360(60)     | 650(50)      | 0            | 0                       | 1680(70)     |
| Ag(3)         | 470(20)                 | 160(10)      | 1120(40)     | 0            | 0                       | 230(30)      |
| Ag(4)         | 590(50)                 | 330(30)      | 2100(100)    | -400(100)    | -1100(100)              | 1210(90)     |

# TABLEAU III—Suite Facteurs de Température Anisotrope (10<sup>5</sup>)

parité des distances Mo-Mo dans le triangle (2.633 à 2.748 Å).

# Arrangement Tridimensionnel

Les motifs  $Mo_9Se_{11}$  sont empilés en files suivant un axe parallèle à la direction |100| (Fig. 3b). Cet axe joue ainsi un rôle comparable à celui de l'axe ternaire dans les phases de Chevrel  $MMo_6X_8$  (Fig. 3a). Cependant, ici, les motifs  $Mo_9Se_{11}$  d'une même file interagissent au moyen d'une courte distance Se(5)—Se(5) de 3.36 Å, et sont environnés par huit autres motifs appartenant à quatre files voisines, tandis que dans les phases de Chevrel, le long d'une même file, les motifs  $Mo_6X_8$  sont séparés



FIG. 3. (a) Projection de la structure de  $MMo_6X_8$  sur le plan (1120). (b) Projection de la structure de Ag<sub>3.6</sub>Mo<sub>9</sub>Se<sub>11</sub> sur le plan (010).



FIG. 4. Projection de la structure de  $Ag_{3,6}Mo_9Se_{11}$  sur le plan (100).

par le site cubique occupé par l'élément M, et sont entourés par six autres motifs appartenant à six files voisines (10). Parallèlement à l'axe a, cette disposition ménage de vastes canaux entre les files (Fig. 4).

Suivant la direction c, chaque motif Mo<sub>9</sub>Se<sub>11</sub> échange huit liaisons Mo—Se intermotifs avec quatre motifs voisins (Fig. 3b):

Quatre liaisons à partir de molybdène du motif vers des séléniums externes;



FIG. 5. Projection de la structure de  $Ag_{3.6}Mo_9Se_{11}$  sur le plan (001).

Quatre liaisons à partir de molybdène externe vers des séléniums du motif.

Sur la Fig. 3b, ces liaisons sont représentées par des flèches allant du molybdène vers le sélénium. Ce mode de liaison intermotif est identique à celui des phases de Chevrel, et aboutit également à l'existence d'une courte distance Mo—Mo intercluster; ici, elle est de 3.73 Å. Elle est marquée en pointillés sur les schémas.

Par contre, suivant la direction b, il ne reste que quatre liaisons Mo—Se intermotifs avec les quatre motifs voisins:

> deux liaisons type  $Mo \rightarrow Se$ deux liaisons type  $Se \leftarrow Mo$ .

Ainsi, la distance Mo-Mo intercluster est aussi considérablement plus longue: 4.96 Å (Fig. 5).

# Arrangement des Atomes Argent

Tous les atomes d'argent sont délocalisés et occupent statistiquement quatre positions cristallographiques autour des motifs  $Mo_{\circ}Se_{11}$ . Ag(1), Ag(2), et Ag(3) sont dans trois sites octédriques déformés de sélénium situés entre les motifs, autour de leur axe d'empilement. Cette disposition est semblable à celle rencontrée dans In<sub>3</sub>  $Mo_{15}Se_{19}$  pour les atomes d'indium In(2) qui occupent partiellement trois sites pseudooctaédriques situés entre les motifs Mo<sub>6</sub>Se<sub>8</sub> et distribués autour de l'axe hexagonal (Fig. 6). Suivant cet axe, les motifs sont également séparés par une courte distance Se—Se de 3.42 Å, comparable donc à celle rencontrée ici (3.36 Å) (Fig. 3b). Par contre, l'occupation des sites est ici plus complexe, car, à l'intérieur de chaque site, les atomes d'argent sont délocalisés en deux positions. D'un côté, Ag(1) et Ag(2)occupent, dans le même site, deux positions distantes de 1.13 Å: Ag(1), déplacé du centre de l'octaèdre, est en site pyramidal à base carrée de sélénium, et Ag(2) est au centre d'une face triangulaire formée par trois séléniums du site précédent. Les ato-



FIG. 6. Projection de la structure de  $In_{\sim 3}Mo_{15}Se_{19}$  sur le plan (1120).

mes Ag(3) sont délocalisés de part et d'autre d'un plan miroir et se retrouvent ainsi en deux sites pyramidaux à base carrée distants de 0.9 Å. Chaque site octaédrique est totalement occupé puisque Ag(1) et Ag(2) possèdent des taux d'occupation de 80 et 20%, respectivement, et que chaque Ag(3) occupe son site à 50% (Fig. 7).

Ag(4), en position générale 16 h, est en site octaédrique de séléniums situés dans le canaux parallèles à l'axe a (Fig. 4). Il est délocalisé de part et d'autre d'un axe binaire pour se retrouver ainsi dans deux sites pyramidaux a base carrée distants de



FIG. 7. Disposition des atomes d'argent Ag(1), Ag(2), et Ag(3) autour de l'axe |100|.

0.78 Å. Le taux d'occupation, voisin de 14%, suggère la possibilité d'une plus grande occupation de ce site: dans le cristal (b), mentionné au départ, ce taux d'occupation monte en effet à 18%, ce qui influe très peu sur la stoechiométrie en argent (0.16 Ag en plus par groupement formulaire).

Les principales distances interatomiques de  $Ag_{3.6}Mo_9Se_{11}$  sont données dans le Tableau IV.

#### TABLEAU IV

DISTANCES INTERATOMIQUES DANS Ag<sub>3.6</sub>Mo<sub>9</sub>Se<sub>11</sub>

| Distances dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is MosSerr (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| (Mo(1)Mo(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1))_{\Lambda}$ 1 × 2.748(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo(1)-Se(1)                                                                                                                                                       | 2.597(2)                                                                                           |
| (Mo(1)Mo(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2))_{A} 2 \times 2.748(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $M_0(1) - Se(2)$                                                                                                                                                  | 2,575(2)                                                                                           |
| (Mo(3)Mo(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4))_{A} 4 \times 2.633(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mo(1)—Se(4)                                                                                                                                                       | $2 \times 2.642(1)$                                                                                |
| (Mo(4)Mo(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(4))_{\Lambda} 2 \times 2.664(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mo(2) - Sc(2)                                                                                                                                                     | $2 \times 2.608(1)$                                                                                |
| Mo(1)Mo(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3)_{4}$ $4 \times 2.732(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $M_0(2) - Se(3)$                                                                                                                                                  | $2 \times 2.666(1)$<br>$2 \times 2.644(2)$                                                         |
| Mo(1) Mo(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4)_{1}$ $4 \times 2.690(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo(3)—Se(1)                                                                                                                                                       | 2 666(1)                                                                                           |
| Mo(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $4)_{A}$ $4 \times 2.730(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mo(3)Se(3):                                                                                                                                                       | 2.000(1)                                                                                           |
| Δ—Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 227(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mo(3) = Se(4)                                                                                                                                                     | $2 \times 2570(2)$                                                                                 |
| Mo(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mo(3)-Se(5)                                                                                                                                                       | 2 554(2)                                                                                           |
| 10(4) 10(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /inter 5.720(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $M_0(4) = Se(2)$                                                                                                                                                  | 2.554(2)                                                                                           |
| Se(5) - Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 367(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M_0(4) = Se(3)$                                                                                                                                                  | 2.000(1)                                                                                           |
| Se(4)— $Se(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.485(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M_{O}(4) = Se(3)$                                                                                                                                                | 2.567(1)                                                                                           |
| Se(3) - Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 566(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mo(4) - Se(5)                                                                                                                                                     | 2.555(1)                                                                                           |
| Se(5) - Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2 \times 3.652(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mo(4) - Se(4)                                                                                                                                                     | 2.555(1)                                                                                           |
| Se(1) - Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $4 \times 3.675(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MO(4) So(4)inter                                                                                                                                                  | 2.090(1)                                                                                           |
| $Se(3) \rightarrow Se(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2 \times 3.735(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                    |
| $Se(2) \rightarrow Se(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2 \times 3.755(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                    |
| Se(1) - Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2 \times 3.750(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                    |
| Se(3) - Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 547(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                    |
| 56(5) 56(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.542(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                    |
| Notations util                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | isées                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                   |                                                                                                    |
| (Mo-Mo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distance entre atome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s de molybdène anna                                                                                                                                               | rtenant au                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | même triangle nerne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndigulaine à l'ave de                                                                                                                                             | Pall-mean                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nunculaire à l'axe de                                                                                                                                             | Lauongement                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | du cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | noiculaire a l'axe de                                                                                                                                             | 1 allongement                                                                                      |
| Μολ-Μον                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | du cluster<br>Distance entre atome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s de molvbdène appa                                                                                                                                               | rtenant à deux                                                                                     |
| ΜοΔΜοΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | du cluster<br>Distance entre atomes<br>triangles voisins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s de molybdène appa                                                                                                                                               | rtenant à deux                                                                                     |
| Μο <sub>Δ</sub> Μο <sub>Δ</sub><br>ΔΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s de molybdène appa                                                                                                                                               | rtenant à deux                                                                                     |
| Μο <sub>Δ</sub> Μο <sub>Δ</sub><br>ΔΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s de molybdène appa                                                                                                                                               | rtenant à deux                                                                                     |
| Mo <sub>Δ</sub> —Mo <sub>Δ</sub><br>Δ—Δ<br>Environnemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s de molybdène appa                                                                                                                                               | rtenant à deux                                                                                     |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ag(4)—Se(2)                                                                                                                                                       | rtenant à deux<br>2.56(2)                                                                          |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | triangles, paper<br>du cluster<br>Distance entre atomet<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)                                                                                                                         | 2.56(2)<br>2.63(2)                                                                                 |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnemer<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(1) - Se(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | triangles, paper<br>du cluster<br>Distance entre atomet<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s de molybdène appa<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)                                                                                   | 2.56(2)<br>2.63(2)<br>2.74(2)                                                                      |
| $Mo_{\Delta}$ — $Mo_{\Delta}$<br>$\Delta$ — $\Delta$<br>Environnemer<br>Ag(1)— $Se(1)Ag(1)$ — $Se(4)Ag(1)$ — $Se(5)Ag(2)$ — $Se(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the stranger, paper<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>at des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)                                                                                           | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)                                                           |
| $Mo_{\Delta}$ — $Mo_{\Delta}$<br>$\Delta$ — $\Delta$<br>Environnemer<br>Ag(1)— $Se(1)Ag(1)$ — $Se(4)Ag(2)$ — $Se(4)Ag(2)$ — $Se(1)Ag(2)$ — $Se(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the stranger, paper<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.621(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(3)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)                                                                            | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)                                                |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnemen<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(1) - Se(5)<br>Ag(2) - Se(1)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the stranger, paper<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.621(4)$<br>$2 \times 2.810(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)                                                             | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)                                                |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(3)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(3)<br>Ag(3) - Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the stranger, paper<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.621(4)$<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(2)                                              | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)                                    |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(2) - Se(3)<br>Ag(3) - Se(3)<br>Ag(3) - Se(3)<br>Ag(3) - Se(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.861(2)$<br>2.963(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(1)—Se(2)<br>Ag(4)—Se(3)                               | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)             |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(1) - Se(5)<br>Ag(2) - Se(3)<br>Ag(3) - Se(5)<br>Ag(3) - Se(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$<br>2.963(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)                | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5)            |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnemen<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(1)<br>Ag(2) - Se(1)<br>Ag(2) - Se(3)<br>Ag(3) - Se(3)<br>Ag(3) - Se(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the stranger, paper<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>$2 \times 2.768(2)$<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.621(4)$<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$<br>2.963(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2) | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5) |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnemen<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(5)<br>Ag(2) - Se(3)<br>Ag(3) - Se(5)<br>Ag(3) - Se(2)<br>Distances entr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the strength of the strength  | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(1)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2)                | 2.56(2)<br>2.63(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5) |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)<br>Ag(3) - Se(3)<br>Ag(3) - Se(3)<br>Ag(3) - Se(2)<br>Distances entri<br>Ag(1) - Ag(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the strength (Å)<br>$2 \times 2.861(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.3261(4)$<br>$2 \times 2.3261(4)$<br>$2 \times 2.3261(4)$<br>3.239(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(1)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2)                | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5) |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(5)<br>Ag(2) - Se(3)<br>Ag(2) - Se(3)<br>Ag(3) - Se(5)<br>Ag(3) - Se(2)<br>Distances enth<br>Ag(1) - Ag(1)<br>Ag(1) - Ag(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>$2 \times 2.895(3)$<br>$2 \times 2.621(4)$<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.861(2)$<br>$2 \times 2.963(3)$<br>re sites d'argent (Å)<br>3.239(4)<br>1.13(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2)                | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5)            |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(3)<br>Ag(3) - Se(5)<br>Ag(3) - Se(5)<br>Ag(3) - Se(2)<br>Distances entri<br>Ag(1) - Ag(2)<br>Ag(2) - Ag(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the stress d'argent (Å)<br>2.526(4)<br>2.222(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2) | 2.56(2)<br>2.63(2)<br>2.63(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5)            |
| $Mo_{\Delta} - Mo_{\Delta}$<br>$\Delta - \Delta$<br>Environnement<br>Ag(1) - Se(1)<br>Ag(1) - Se(4)<br>Ag(2) - Se(4)<br>Ag(2) - Se(1)<br>Ag(2) - Se(1)<br>Ag(2) - Se(1)<br>Ag(3) - Se(3)<br>Ag(3) - Se(3)<br>Ag(3) - Se(2)<br>Distances entrational entry of the second s | the strength ( $\hat{A}$ )<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents ( $\hat{A}$ )<br>2 × 2.768(2)<br>2 × 2.768(2)<br>2 × 2.895(3)<br>2.460(7)<br>2 × 2.621(4)<br>2 × 2.810(2)<br>2 × 2.810(2)<br>2 × 2.861(2)<br>2.963(3)<br>re sites d'argent ( $\hat{A}$ )<br>3.239(4)<br>1.13(2)<br>2.22(4)<br>0.914(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2) | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5) |
| $\begin{array}{l} Mo_{\Delta} Mo_{\Delta} \\ \Delta \Delta \\ \\ Environnemen \\ Ag(1) - Se(1) \\ Ag(1) - Se(4) \\ Ag(1) - Se(5) \\ Ag(2) - Se(1) \\ Ag(2) - Se(3) \\ Ag(3) - Se(3) \\ Ag(3) - Se(3) \\ Ag(3) - Se(2) \\ \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the stranger, paper<br>du cluster<br>Distance entre atome:<br>triangles voisins<br>Distance intertriangle<br>nt des argents (Å)<br>2.657(2)<br>$2 \times 2.768(2)$<br>$2 \times 2.895(3)$<br>2.460(7)<br>$2 \times 2.621(4)$<br>$2 \times 2.810(2)$<br>$2 \times 2.810(2)$<br>$2 \times 2.861(2)$<br>2.963(3)<br>re sites d'argent (Å)<br>3.239(4)<br>1.13(2)<br>2.22(4)<br>0.914(7)<br>2.74(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(4)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(1)—Se(2)<br>Ag(4)—Se(3)<br>Ag(3)—Se(2)                | 2.56(2)<br>2.63(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.95(2)<br>3.370(4)<br>3.413(2)<br>3.740(5) |
| $\begin{array}{l} Mo_{\Delta} Mo_{\Delta} \\ \Delta \Delta \\ Environnement \\ Ag(1) - Se(1) \\ Ag(1) - Se(4) \\ Ag(2) - Se(2) \\ Ag(2) - Se(3) \\ Ag(3) - Ag(1) \\ Ag(1) - Ag(2) \\ Ag(2) - Ag(2) \\ Ag(3) - Ag(3) \\ Ag(3) - Ag(3) \\ Ag(4) - Ag(4) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the state of the second s | Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(3)<br>Ag(4)—Se(4)<br>Ag(4)—Se(4)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(4)—Se(2)<br>Ag(3)—Se(2)                | 2.56(2)<br>2.63(2)<br>2.74(2)<br>2.74(2)<br>2.75(2)<br>3.370(4)<br>3.413(2)<br>3.740(5)            |



FIG. 8. Courbe de résistivité  $\rho = f(T)$  de Ag<sub>3.6</sub>Mo<sub>9</sub>Se<sub>11</sub>.

# **Proprieties Electriques**

Les mesures de résistivité en fonction de la température ont été effectuées sur différents monocristaux de la température ambiante à celle de l'hélium liquide (4.2 K). Les cristaux utilisés se présentent sous forme de plaquettes carrées de 0.5 mm de côté et d'épaisseur comprise entre 0.1 et 0.2 mm, se développant suivant la face (100). La méthode utilisée est celle décrite par Van der Pauw (14). Les quatre contacts sont réalisés par soudure d'indium aux ultrasons sur les bords de la plaquette.

Le comportement de Ag<sub>3.6</sub>Mo<sub>9</sub>Se<sub>11</sub> s'apparente à celui d'un semi-métal, faiblement métallique, de l'ambiante à 134 K (faible décroissance de la résistivité de  $6.88 \times 10^{-3}$ à  $5.74 \times 10^{-3} \Omega$  cm) avec tendance à devenir semi-conducteur de 134 à 4.2 K (remontée de la résistivité jusqu'à  $30 \times 10^{-3} \Omega$  cm à 4.2 K) (Fig. 8).

Dans ce type de composés, où les atomes d'argent, probablement à l'état d'ions Ag<sup>+</sup> compatible avec les distances Ag—Se, occupent partiellement plusieurs sites proches, avec des facteurs de température élevés, une conductivité de type ionique est attendue à plus haute température. Actuellement, celle-ci n'a pu être mise en évidence jusqu'à une température de l'ordre de 100°C sans doute en raison de la forte conductivité électronique. Des études vers les plus hautes températures sont en cours.

## Conclusion

Cette étude montre le rôle original de l'argent dans les composés à clusters de molybdène, par leur facilité à s'insérer dans de nombreux sites. Cette propriété a été récemment mise à profit pour synthétiser le quaternaire  $In_2Ag_xMo_{15}Se_{19}$  ( $0 < x \le 3$ ), isotype de  $In_2Mo_{15}Se_{19}$ , dans lequel les atomes d'argent occupent partiellement ( $0 < \tau \le 0.5$ ) trois sites situés autour de celui de l'indium (15)

#### Références

- 1. M. POTEL, thèse de Doctorat d'Etat, Rennes, 1981.
- M. POTEL, R. CHEVREL, M. SERGENT, M. DE-CROUX, ET Ø. FISCHER, C.R. Acad. Sci. C 288, 429-432 (1979).
- 3. A. GRUTTNER, K. YVON, B. SEEBER, R. CHEVREL, M. POTEL, ET M. SERGENT, Acta Crystallogr. B 35, 285–292 (1979).
- R. CHEVREL, M. POTEL, M. SERGENT, M. DE-CROUX, ET Ø. FISCHER, Mater. Res. Bull. 15, 867– 874 (1980).
- 5. M. POTEL, R. CHEVREL, ET M. SERGENT, Acta Crystallogr. B 37, 1007 (1981).
- R. CHEVREL, M. POTEL, M. SERGENT, M. DE-CROUX, ET Ø. FISCHER, J. Solid State Chem. 34, 247-251 (1980).

- 7. M. POTEL, R. CHEVREL, ET M. SERGENT, Acta Crystallogr. B 36, 1319-1322 (1980).
- M. POTEL, R. CHEVREL, M. SERGENT, J. C. AR-MICI, M. DECROUX, ET Ø. FISCHER, J. Solid State Chem. 35, 286-290 (1980).
- 9. M. POTEL, R. CHEVREL, ET M. SERGENT, Acta Crystallogr. B 36, 1545-1548 (1980).
- R. CHEVREL ET M. SERGENT, "Superconductivity in Ternary Compounds Topics of Current Physics (Ø. Fischer et M. B. Maple, Eds.), Vol. I, pp. 25-86, Springer-Verlag, Berlin/Heidelberg/New York, 1982.
- P. GOUGEON, M. POTEL, J. PADIOU, ET M. SERGENT, "Proceedings, VII International Conference on Solid Compounds of Transition Elements, Grenoble, 1982."
- P. GOUGEON, M. POTEL, J. PADIOU, ET M. SERGENT, C.R. Acad. Sci. II 296, 351-356 (1983).
- B. A. FRENZ, ENRAF NONIUS CAD-4 SDP in "Computing in Crystallography" (M. Schenk et R. Olthof-Hazekamp, Eds.) Delft Univ. Press.
- L. J. VAN DER PAUW, Philips Research Reports, Vol. 13, 1-9 (1958).
- 15. P. GOUGEON, M. POTEL, ET M. SERGENT, à paraître.